
 FROM PROGRAMMING TO SOFTWARE ENGINEERING

The above is the title of a series of presentations that I have made in numerous U.S. and International
venues. These presentations have been geared to exploring the “lessons learned” from 50+ years of
attempting to build software systems. They have also addressed some of the cultural, technological,
and conceptual issues related to building acceptable systems in a timely and affordable way.

A major hinderance to progress in past t imes seems to be that few, if any, have attempted to revisit the
set of design tasks from an engineering perspective and/or initiate a public debate. Rather we have
attempted to dress up the loosely and/or de-coupled subtasks with “process management tools ” and a
variety of independently developed tools. While much progress has been made as to fundamental
understandings the focus of research has often been on limited aspects of the various subtasks without
explicitly addressing the need for the integration of the bits and pieces of an overall solution.

In addition to the above There is strong evidence to support the idea that several of the system design
tasks transcend human abilities to accomplish in an acceptable fashion. Specifically the requirements
elicitation/validation tasks would seem to need semi-automated formal machine-based support; in
addition the task of creating both the requirements and the design documentation seem to be beyond
our best manual efforts. These documents are critical for several reasons including the need to “evolve”
the system over time when the application changes. It is interesting to note that we still talk of “software
maintenance” in spite of the fact that a more cogent concept has always been “evolution”; the fact that it is
“evolution” rather than “maintenance” immediately suggests that you need acceptable documentation. Yet
most of us would admit that we have been able to meet this need.

As to the scientific progress that is being made there is much to be done in providing “engineering- level”
interfaces. While the next 20 years, or so, will lead to training up the next generation of “system-designers”
and/or system/software engineers these folks will be system/software engineers and not academic
researchers. Hence, the arcane methodologies that provide the basis for the engineering discipline must
be made virtually transparent via appropriate engineering interfaces.

I think it is important to continue to stress the need for scientific research (via computer science,
mathematics, etc.). However, we need to be clear about the fact that any research advances are the
necessary precursor to the development of a complete set of integrated methodologies/technologies to
support the engineering tasks. Importantly, in my opin ion, the technologies needed to support a principled
engineering discipline (which is certainly not computer science or programming per se) have yet to be
well, or completely articulated.

Given all of the above, there is the strong suggestion that the research and development community
should re-evaluate the overall design task(s), and past efforts. Lessons-learned, and the understanding that
the seductive linguistic de-coupling of the overall task does not faciltiate an acceptable and principled
composition of the sub-task products. Therein lies a major scientific and engineering problem.

I have been, and am now, involved with the international research community in articulating a “critical
Path” research agenda to eventually enable a principled systems/s oftware engineering discipline. In this
context the focus is on describing the perceived “technology needs” based on 50+ years of the
“programming paradigm” experience. It should be emphasized that the suite of methodologies that
will eventually provide the integrated semi-automated system/software engineering environments are
largely the subject of on-going research. However, while we may not understand how the problem(s)
will be solved, it is clear to a studied effort as to what the technology needs would seem to be. As
examples, not only do the requirements elicitation/validation and documentation tasks require
technological advances, the semi-automated translation of any “application -domain language
(also legacy systams)” to the analysis/design language of given engineering design platforms
needs to be addressed as does the iterative issues of “natural language to requirements to specifications”.

In the past several years there has been a growing interest in articulating a complete (end-to-end; natural
language requirements to fielded systems) paradigmatic concept. In essence there is a growing consensus
as to the need for an integrated, interactive, and semi-automated suiteof tools or a platform/environment to
support the engineering needs. It may be useful to have a full consensus as to the elements of that future
platform; however, that may not be achievable and/or desired. Nevertheless, it is important to motivate a
discussions leading to groups of researchers having some strong agreement as to the future configuration
of design platforms. Namely,investigators are beginning to realize that the merits and utility of a given
theoretical advance lies primarily with its potential for clean integration into an overall context, and to
consider this in the “crafting” of the partial solutions.

To prompt useful scientific discussions, facilitate international collaborations, leverage investments, and
prompt integration ARO has supported an on-going series of international invitation- only workshops.
These workshops have often been co-funded by NSF,DARPA,AFOSR, and ONR. These workshops have
been an element in the strategy of addressing all the concerns above. In addition a number of the
investigators in the ARO research program have been working to create a complete set of sub-tasks
that spans the scope of the engineering system/software design needs; these needs(subtasks) are then being
used to evaluate the completeness of the several nascent platforms presently under development. As a
second activity we are mapping the various “tools” that are available against the list of needs. The
workshops, and the two activities having to do with articulating the elements of a complete solution
and an evaluation of tools, has led to significant productive discussions, some international collaborations,
the integration of some methodologies, and most importantly (for the on-going research efforts and defense
of future investments) some agreement on the elements of a critical-path to the future.

 Some Thoughts For Inspiring Discussions and “Out-Of-The-Box” Thinking

 Describe a “visionary” (20 year timeframe) end-to-end “solution” for generalized principled software
engineering. Note, proposed “vision” should address all software life -cycle lessons-learned in a way that
would lead one to developing rational expectations for successful revolutionary implementation. Using
your “vision”, articulate the critical-path fundamental research areas. All aspects of your “vision” should
consider the potential contribution of any “sub-tasks”/methodologies to the idea of “value-added”-
schedule, cost, quality, and the sustaining (evolution) of the system.

Analyze the problem of effectively competing for research resources. It is suggested that part of the
problem is the large influence of the “status quo”. Another part is thought to be the lack of “credibility”
(as to the potential ROI on investments) when proposed new efforts are articulated as refinements to largely
unacceptable traditional methods and/or are stand-alone partial solutions. A further perception is, that in
the absence of an academic/ professional software/system engineering discipline, the din of opinions and
practices prevails and undermines the confidence needed to build institutional support for continued R&D.
Given the above, and any other issues you perceive, how can we address the need to successfully justify
continued research (with the possibility of enhanced funding) while maintaining the sincere belief that the
recommended research directions will make a difference.

So-called requirements-engineering needs would seem to beg for revolutionary methodologies for the rapid
(and often collaborative/interactive) capture of perceived/desired requirements, rapid iteration/refinement
of stated requirements, machine-based “sanity-check” of requirements (for completeness, coherency, etc.),
generation of requirements -documentation, and a machine-compatible output available as input to the
next stage of the design process. What ideas do you have to exploit past work, facilitate integration of the
various approaches, and give direction to future research efforts?

Software system maintenance, which should more rationally be referred to as system evolution, requires
that system design- documentation be complete and accurate; however, there is strong evidence that
humans cannot adequately/acceptably document the systems they design. Conceptually, this problem
may be overcome if we could semi/automatically generate the documentation as an artifact of the design
process. Do you have any have any thoughts as to dealing with this idea?

 It is expected that some of the present, and newly initiated, research efforts will (in principle) result in
potentially remarkable ROI; however the immediate transition to practice will be hampered by the level of
expertise required to effectively use these new techniques and integrated suites of tools. This would appear
to suggest some ideas for focused research, and the need for a concern for the development of adequate
academic curricula for a software/systems engineering discipline. As to the research, human-computer
interfaces are needed to support the practice of software/systems engineering ; the complex (and maybe
arcane) methodologies needed to support the various tasks should be largely invisible to the average
practicioner. Simplifying the high-level implementations of fundamental methodologies with appropriate
interfaces is only a partial solution, there is need to eventually transform the workforce to an engineering
community schooled in new techniques. Can you suggest how we treat of both the “interfaces” and
educational challenges.

